--- title: "BFV" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{BFV} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` Load libraries that will be used. ```{r setup} library(polynom) library(HomomorphicEncryption) ``` Set some parameters. ```{r params} d = 4 n = 2^d p = (n/2)-1 q = 874 ``` Set a working seed for random numbers ```{r} set.seed(123) ``` Here we create the polynomial modulo. ```{r GenPolyMod} pm = polynomial( coef=c(1, rep(0, n-1), 1 ) ) print(pm) ``` Create the secret key and the polynomials a and e, which will go into the public key ```{r} # generate a secret key s = GenSecretKey(n) print(s) ``` ```{r} # generate a a = GenA(n, q) print(a) ``` Generate the error for the public key. ```{r} e = GenError(n) print(e) ``` Generate the public key. ```{r} pk0 = GenPubKey0(a, s, e, pm, q) print(pk0) ``` ```{r} pk1 = GenPubKey1(a) ``` Create a polynomial message ```{r} # create a message m = polynomial( coef=c(6, 4, 2) ) ``` Create polynomials for the encryption ```{r} # polynomials for encryption e1 = GenError(n) e2 = GenError(n) u = GenU(n) print(u) ``` Generate the ciphertext. ```{r} ct0 = EncryptPoly0(m, pk0, u, e1, p, pm, q) print(ct0) ``` ```{r} ct1 = EncryptPoly1( pk1, u, e2, pm, q) print(ct1) ``` Decrypt ```{r} decrypt = (ct1 * s) + ct0 decrypt = decrypt %% pm decrypt = CoefMod(decrypt, q) # rescale decrypt = decrypt * p/q ``` Round (remove the error) then mod p ```{r} # round then mod p decrypt = CoefMod(round(decrypt), p) print(decrypt) ``` Which is indeed the message that we first encrypted. Next, look at the vignette BFV-2 which does the exact same process, but unpacks all the functions used here into basic mathematical operations.