---
title: "BFV"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{BFV}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
Load libraries that will be used.
```{r setup}
library(polynom)
library(HomomorphicEncryption)
```
Set some parameters.
```{r params}
d = 4
n = 2^d
p = (n/2)-1
q = 874
```
Set a working seed for random numbers
```{r}
set.seed(123)
```
Here we create the polynomial modulo.
```{r GenPolyMod}
pm = polynomial( coef=c(1, rep(0, n-1), 1 ) )
print(pm)
```
Create the secret key and the polynomials a and e, which will go into the public key
```{r}
# generate a secret key
s = GenSecretKey(n)
print(s)
```
```{r}
# generate a
a = GenA(n, q)
print(a)
```
Generate the error for the public key.
```{r}
e = GenError(n)
print(e)
```
Generate the public key.
```{r}
pk0 = GenPubKey0(a, s, e, pm, q)
print(pk0)
```
```{r}
pk1 = GenPubKey1(a)
```
Create a polynomial message
```{r}
# create a message
m = polynomial( coef=c(6, 4, 2) )
```
Create polynomials for the encryption
```{r}
# polynomials for encryption
e1 = GenError(n)
e2 = GenError(n)
u = GenU(n)
print(u)
```
Generate the ciphertext.
```{r}
ct0 = EncryptPoly0(m, pk0, u, e1, p, pm, q)
print(ct0)
```
```{r}
ct1 = EncryptPoly1( pk1, u, e2, pm, q)
print(ct1)
```
Decrypt
```{r}
decrypt = (ct1 * s) + ct0
decrypt = decrypt %% pm
decrypt = CoefMod(decrypt, q)
# rescale
decrypt = decrypt * p/q
```
Round (remove the error) then mod p
```{r}
# round then mod p
decrypt = CoefMod(round(decrypt), p)
print(decrypt)
```
Which is indeed the message that we first encrypted.
Next, look at the vignette BFV-2 which does the exact same process, but unpacks all the functions used here into basic mathematical operations.