--- title: "BGV ModSwitch" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{BGV ModSwitch} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(polynom) library(HomomorphicEncryption) ``` Set some parameters. ```{r params} d = 4 n = 2^d p = (n/2)-1 t = p q = 868 pm = GenPolyMod(n) ``` Set a working seed for random numbers ```{r} set.seed(123) ``` Create the secret key and the polynomials a and e, which will go into the public key ```{r} # generate a secret key s = GenSecretKey(n) # generate a a = GenA(n, q) # generate the error e = GenError(n) ``` Generate the public key. ```{r} pk0 = GenPubKey0(a, s, e*p, pm, q) pk1 = GenPubKey1(a) ``` Generate the evaluation key (EvalKey, EK). ```{r} ek0 = GenEvalKey0(a, s, e) ek1 = a ``` Create a polynomial message ```{r} # create a message m1 = polynomial( coef=c(1, 1, 1) ) m2 = polynomial( coef=c(0, 1 ) ) ``` Create polynomials for the encryption ```{r} # polynomials for encryption e1 = GenError(n) e2 = GenError(n) u = GenU(n) ``` Generate the ciphertext ```{r} m1_ct0 = pk0*u + p*e1 + m1 m1_ct0 = m1_ct0 %% pm m1_ct0 = CoefMod(m1_ct0, q) m1_ct1 = pk1*u + p*e2 m1_ct1 = m1_ct1 %% pm m1_ct1 = CoefMod(m1_ct1, q) m2_ct0 = pk0*u + p*e1 + m2 m2_ct0 = m2_ct0 %% pm m2_ct0 = CoefMod(m2_ct0, q) m2_ct1 = pk1*u + p*e2 m2_ct1 = m2_ct1 %% pm m2_ct1 = CoefMod(m2_ct1, q) ``` EvalMult ```{r} multi_ct0 = m1_ct0 * m2_ct0 multi_ct0 = multi_ct0 %% pm multi_ct0 = CoefMod(multi_ct0, q) multi_ct0 = round(multi_ct0) multi_ct1 = (m1_ct0 * m2_ct1 + m1_ct1 * m2_ct0) multi_ct1 = multi_ct1 %% pm multi_ct1 = CoefMod(multi_ct1, q) multi_ct1 = round(multi_ct1) multi_ct2 = (m1_ct1 * m2_ct1) multi_ct2 = multi_ct2 %% pm multi_ct2 = CoefMod(multi_ct2, q) multi_ct2 = round(multi_ct2) ``` Relinearize: ```{r} ct0hat = CoefMod(multi_ct0 + ek0 * multi_ct2 %% pm, q) ct1hat = CoefMod(multi_ct1 + ek1 * multi_ct2 %% pm, q) ``` Attemtp to modswitch (note at this point relinearization doesn't even work yet) ```{r} q_prime = q - 1 ct0hat_prime = round(ct0hat * q_prime/q) ct1hat_prime = round(ct1hat * q_prime/q) ``` Decrypt the multiple ```{r} decrypt = ct0hat_prime + ct1hat_prime * s decrypt = decrypt %% pm decrypt = CoefMod(decrypt, q_prime) decrypt = decrypt * p/q_prime decrypt = CoefMod(round(decrypt), p) print(decrypt) ```