--- title: "CKKS encode 3" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{CKKS encode 3} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` Load libraries that will be used. ```{r setup} library(polynom) library(HomomorphicEncryption) ``` Set a working seed for random numbers (so that random numbers can be replicated exactly). ```{r seed} set.seed(123) ``` Set some parameters. ```{r params} M <- 8 N <- M / 2 scale <- 4 xi <- complex(real = cos(2 * pi / M), imaginary = sin(2 * pi / M)) ``` Create the (complex) numbers we will encode. ```{r z} z <- c(complex(real=3, imaginary=4), complex(real=2, imaginary=-1)) print(z) ``` Now we encode the vector of complex numbers to a polynomial. ```{r encode} pi_z <- pi_inverse(z) scaled_pi_z <- scale * pi_z rounded_scale_pi_zi <- sigma_R_discretization(xi, M, scaled_pi_z) p <- sigma_inverse(xi, M, rounded_scale_pi_zi) coef <- as.vector(round(Re(p))) p <- polynomial(coef) ``` Let's view the result. ```{r print-p} print(p) ``` Let's decode to obtain the original number: ```{r decode} rescaled_p <- coef(p) / scale z <- sigma_function(xi, M, rescaled_p) decoded_z <-pi_function(M, z) print(decoded_z) ``` The decoded z is indeed very close to the original z, we round the result to make the clearer. ```{r round} round(decoded_z) ``` Next, work through the CKKS-encode-2 vignette, which breaks down the encode and decode functions into the individual steps.