--- title: "CKKS encode encrypt" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{CKKS encode encrypt} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` Load libraries that will be used. ```{r setup} library(polynom) library(HomomorphicEncryption) ``` Set a working seed for random numbers (so that random numbers can be replicated exactly). ```{r seed} set.seed(123) ``` Set some parameters. ```{r params} M <- 8 N <- M / 2 scale <- 200 xi <- complex(real = cos(2 * pi / M), imaginary = sin(2 * pi / M)) ``` Create the (complex) numbers we will encode. ```{r z} z <- c(complex(real=3, imaginary=4), complex(real=2, imaginary=-1)) print(z) ``` Now we encode the vector of complex numbers to a polynomial. ```{r encode} m <- encode(xi, M, scale, z) ``` Let's view the result. ```{r print-p} print(m) ``` Set some parameters. ```{r params2} d = 4 n = 2^d p = (n/2)-1 q = 874 pm = GenPolyMod(n) ``` Create the secret key and the polynomials a and e, which will go into the public key ```{r seckey} # generate a secret key s = GenSecretKey(n) # generate a a = GenA(n, q) # generate the error e = GenError(n) ``` Generate the public key. ```{r pubkey} pk0 = GenPubKey0(a, s, e, pm, q) pk1 = GenPubKey1(a) ``` Create polynomials for the encryption ```{r} # polynomials for encryption e1 = GenError(n) e2 = GenError(n) u = GenU(n) ``` Generate the ciphertext ```{r} ct0 = CoefMod((pk0*u + e1 + m) %% pm, q) ct1 = EncryptPoly1(pk1, u, e2, pm, q) ``` Decrypt ```{r} decrypt = (ct1 * s) + ct0 decrypt = decrypt %% pm decrypt = CoefMod(decrypt, q) print(decrypt[1:length(m)]) ``` Let's decode to obtain the original number: ```{r decode} decoded_z <- decode(xi, M, scale, polynomial(decrypt[1:length(m)])) print(decoded_z) ``` The decoded z is indeed very close to the original z, we round the result to make the clearer. ```{r round} round(decoded_z) ```